Mixing Layers in Symmetric Crypto

Ko Stoffelen
Part I

Shorter Linear Straight-Line Programs for MDS Matrices

Part II

Column Parity Mixers
MDS Matrices in Symmetric Crypto

- **Maximum Distance Separable**
MDS Matrices in Symmetric Crypto

- Maximum Distance Separable
- Common linear layer with optimal \textit{branch number}
MDS Matrices in Symmetric Crypto

- **Maximum Distance Separable**
- Common linear layer with optimal *branch number*
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n\times n}$
MDS Matrices in Symmetric Crypto

- Maximum Distance Separable
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $\left(\mathbb{F}_2^k\right)^{n \times n}$
- Compared by ‘XOR count’: multiplication of single element
MDS Matrices in Symmetric Crypto

- **Maximum Distance Separable**
- Common linear layer with optimal *branch number*
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by ‘XOR count’: multiplication of single element
- But when viewed as binary matrix:
MDS Matrices in Symmetric Crypto

• **Maximum Distance Separable**
• Common linear layer with optimal *branch number*
• A lot of effort on finding efficient MDS matrices over \((\mathbb{F}_2^k)^{n \times n}\)
• Compared by ‘XOR count’: multiplication of single element
• But when viewed as binary matrix:
 – Problem becomes shortest-linear straight-line program
MDS Matrices in Symmetric Crypto

• Maximum Distance Separable
• Common linear layer with optimal branch number
• A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
• Compared by ‘XOR count’: multiplication of single element
• But when viewed as binary matrix:
 – Problem becomes shortest-linear straight-line program
 – Global optimization saves more XORs
MDS Matrices in Symmetric Crypto

- **Maximum Distance Separable**
- Common linear layer with optimal *branch number*
- A lot of effort on finding efficient MDS matrices over \((\mathbb{F}_2^k)^{n \times n}\)
- Compared by ‘XOR count’: multiplication of single element
- But when viewed as binary matrix:
 - Problem becomes shortest-linear straight-line program
 - Global optimization saves more XORs
 - Old algorithms improve many results (e.g., AES MixColumns)
MDS Matrices in Symmetric Crypto

- **Maximum Distance Separable**
- Common linear layer with optimal *branch number*
- A lot of effort on finding efficient MDS matrices over \((\mathbb{F}_2^k)^{n \times n}\)
- Compared by ‘XOR count’: multiplication of single element
- But when viewed as binary matrix:
 - Problem becomes shortest-linear straight-line program
 - Global optimization saves more XORs
 - Old algorithms improve many results (e.g., AES MixColumns)
 - We find new MDS matrices with lowest number of XORs
Column Parity Mixers

- Keccak-f has very strong bounds on differential trails due to θ
Column Parity Mixers

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ-like mixing layers not well understood
Column Parity Mixers

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ-like mixing layers not well understood
- CPM: generalization of θ
Column Parity Mixers

- Keccak-\(f \) has very strong bounds on differential trails due to \(\theta \)
- Properties of \(\theta \)-like mixing layers not well understood
- CPM: generalization of \(\theta \)
 - Interesting algebraic properties
Column Parity Mixers

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ-like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties
 - Good diffusion properties
Column Parity Mixers

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ-like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties
 - Good *diffusion* properties
 - Also suitable for strongly aligned ciphers
Column Parity Mixers

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ-like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties
 - Good diffusion properties
 - Also suitable for strongly aligned ciphers
 - Competitive with MDS matrices
Column Parity Mixers

For an $m \times n$ matrix A over \mathbb{F}_2^k:

$$\theta(A) = A + f(A)$$

$$\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{pmatrix}$$
Column Parity Mixers

For an $m \times n$ matrix A over \mathbb{F}_2^k:

$$\theta(A) = A + 1_m^T A$$

\[
\begin{pmatrix}
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{pmatrix}
\]

$1 \times n$ column parity
Column Parity Mixers

For an \(m \times n \) matrix \(A \) over \(\mathbb{F}_2^k \):

\[
\theta(A) = A + 1^T_mAZ
\]

\[
\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{pmatrix}
\begin{pmatrix}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{pmatrix}
\]

1\times n \text{ column parity}

\text{n\times n \text{ parity-folding matrix}}

1\times n \text{ \(\theta \)-effect}
Column Parity Mixers

For an $m \times n$ matrix A over \mathbb{F}_2^k:

$$\theta(A) = A + 1_m 1^T_m A Z$$

\[
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{pmatrix}
\begin{pmatrix}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{pmatrix}
\]

$1 \times n$ column parity

$n \times n$ parity-folding matrix

$1 \times n$ θ-effect

$m \times n$ expanded θ-effect
Column Parity Mixers

For an $m \times n$ matrix A over \mathbb{F}_2^k:

$$\theta(A) = A + 1^m_m A Z$$

\[
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{pmatrix}
\begin{pmatrix}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{pmatrix}
\]
Column Parity Mixers

For an $m \times n$ matrix A over \mathbb{F}_2^k:

$$\theta(A) = A + 1_m^T A Z$$

\[
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\begin{pmatrix} 1 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{pmatrix}
\begin{pmatrix}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{pmatrix}
\]

$1 \times n$ column parity

$n \times n$ parity-folding matrix

$1 \times n$ θ-effect

$m \times n$ expanded θ-effect

θ fully defined by m, n and Z